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Abstract
T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these 
biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias 
field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different 
pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. 
Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must 
work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing 
and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correc-
tion to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network 
“DeepN4” on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and 
bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve 
networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median 
PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight 
additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK 
preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and 
models are released at https:// github. com/ MASIL ab/ DeepN4.
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Introduction

Structural magnetic resonance imaging (MRI) highlights dif-
ferences in tissue contrast based on the longitudinal relaxa-
tion time of hydrogen protons, making structural images suit-
able for delineating anatomical structures, abnormalities, and 
tissue types (Damadian, 1971; Huo et al., 2019; Johnson, 
2016). Clinically, structural images are frequently utilized 
as a reference to monitor the progression of disease and the 
efficacy of treatments for neurological disorders (Schiffmann 
& Knaap, 2009). However, structural MRI suffers from inten-
sity inhomogeneity artifacts appearing as a low frequency 
spatial intensity changes (“bias field”) that occur in part due 
to imperfections in the magnetic fields (Vovk et al., 2007). 
Correcting for these low frequency artifacts is a necessary 

preprocessing step in image processing. This helps avoid 
erroneous results in downstream analyses such as image 
segmentation, registration, texture analysis, and tissue clas-
sification (Gispert et al., 2004; Xu et al., 2022).

There are several frameworks for eliminating the spatially 
varying bias fields (Song et al., 2017; Vovk et al., 2007). 
In general, they follow two steps: (1) estimation of the bias 
field and (2) computing the corrected debiased image. Tra-
ditional correction methods can be classified as prospec-
tive (Axel et al., 1987; Mihara et al., 1998; Narayana et al., 
1988; Simmons et al., 1994; Vovk et al., 2007) or retro-
spective approaches (Song et al., 2017), with retrospective 
approaches gaining dominance due to their generalizabil-
ity, efficiency, and fewer assumptions about the acquisition 
process (Vovk et al., 2007). Retrospective approaches use 
acquired images containing anatomical and intensity inho-
mogeneity information, along with prior knowledge of the 
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imaging object. Retrospective approaches are further divided 
into filtering (Brinkmann et al., 1998), surface fitting, seg-
mentation (Ashburner & Friston, 2005), and histogram (Sled 
et al., 1998) stages. Of particular significance to our work 
is the local histogram-based N3 method, which iteratively 
estimates the smooth multiplicative field by maximizing the 
high frequency component of the image intensity distribu-
tion (Sled et al., 1998). Our method estimates this spatially 
varying multiplicative low frequency component with a deep 
learning network based on the principles of the N3 approach. 
A refinement of N3 is N4ITK which estimates the field at 
each iteration using the results of the previous iteration along 
with a B-spline approximation (Tustison et al., 2010), and is 
widely accepted due to the effectiveness and efficiency of 
the approach. N4ITK, provided by ITK, is integrated into 
various neuroimaging analysis tools, including SimpleITK 
(Yaniv et al., 2018), ANTs (Avants et al., 2009), FreeSurfer 
(Fischl, 2012), fmriPrep (Esteban et al., 2019), NiPype 
(Gorgolewski et al., 2011), NeuroNorm (Payares-Garcia & 
Mateu, 2023), and MRtrix (Tournier et al., 2012). Thus, in 
the past decade N4ITK has been recognized as the state-of-
the-art (SOTA) approach and so we use N4ITK as a starting 
point for our own model design.

Configuring ITK can be challenging, especially with 
the unfamiliarity with CMake, and requires careful consid-
eration of compatibility across ITK, operating across ITK, 
operating systems, compiler versions, and hardware plat-
forms. While ITK is integrated into various neuroimaging 
analysis tools and is accessible to the public, the compilation 
process entails the installation of accompanying libraries 
and software packages. However, in cases where sole inter-
est lies in N4 correction, these additional libraries become 
superfluous. For example, SimpleITK (Yaniv et al., 2018) 

encompass Elastix, GTest, Luc, PCRE2, SWIG, and Sphinx, 
whereas ANTs (Avants et al., 2009) extends to comprise 
Cppcheck, KWStyle, Slier, Uncrustify, and VTK, alongside 
ITK. This introduces complexities in terms of licensing and 
integration (Fig. 1a).

The use of differentiable approaches for end-to-end 
learning pipelines is an actively evolving area of research 
(Agrawal et al., 2019; Pineda et al., 2022). Downstream 
tasks such as segmentation are often performed after inho-
mogeneity correction. However, optimization of parameters 
before inhomogeneity correction for outcomes measured 
afterwards is not easily done; N4ITK is opaque to gradi-
ent based optimization. Our paper addresses this problem 
by constructing an intermediate inhomogeneity correction 
step that is differentiable to optimize models before and 
after inhomogeneity correction. This enables the use of loss 
function based on the characteristics after inhomogeneity 
correction (Fig. 1b).

Recently, deep learning models have achieved SOTA 
results in medical image processing tasks. Researchers have 
proposed deep learning-based methods for bias field correc-
tion of MR images (Chuang et al., 2022; Gaillochet et al., 
2020; Goldfryd et al., 2021; Simkó et al., 2022; Sridhara 
et al., 2021; Wan et al., 2019; Xu et al., 2022). Of these, 
there are two open source sharable models that fit our cri-
teria, and are a feedforward CNN (Simkó et al., 2022; Xu 
et al., 2022) and an autoencoder (Sridhara et al., 2021). 
Simkó et al. (2022) used implicit training on convolution 
neural network (CNNs) for bias field correction (Simkó 
et al., 2022). Sridhara et al. (2021) used an autoencoder 
based deep learning architecture to predict bias field that 
outperforms the conventional N4ITK approach (Sridhara 
et al., 2021).

Fig. 1  T1w MRI scans show spatial variations of image intensities, 
known as bias field effects, caused by the field inhomogeneity. a The 
state-of-the-art framework that models the bias field has external 
dependencies that complicate integration into imaging pipelines. b To 
address this, we propose DeepN4, a deep learning differentiable end-

to end-model that utilizes the PyTorch python library; ONNX allows 
conversion across a deep learning framework. Our model allows 
loss function based on post-inhomogeneity correction. Our approach 
allows for the loss function based on post-inhomogeneity correction. 
Abbreviation: NN, Neural network
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In the present work we provide a simple feedforward 
deep learning network for estimating the multiplicative 
field, trained with a direct (non-adversarial) loss term. We 
show parity or improvement on other open source mod-
els, and at a sufficiently high fidelity that further innova-
tion and complexity seem unnecessary (Xu et al., 2022). 
Thus, we propose a differentiable approach that estimates 
the smooth bias field while facilitating flexible and port-
able implementations of the SOTA N4ITK bias field correc-
tion from raw T1-weighted (T1w) MRI without complexity 
(Fig. 1). The model is trained on a large repository of T1w 
images (Table 1) and then validated on eight external data-
sets (Table 2) to understand model performance on how the 
model estimated the low spatial frequency fields from high 
spatial frequency T1w MRI. Finally, we release and open 

source all model weights and inference scripts, allowing 
DeepN4 to be seamlessly integrated into other workflows.

Methods and Materials

We model each bias field as a multiplicative field (Tustison 
et al., 2010). Rewriting Eq. (1) from N3 paper (Sled et al., 
1998), we have

where a is the acquired image, u is the corrected image, b 
is the bias field, and r is the voxel position of the images. 
We assume both u(r) and b(r) are greater than zero at 
all points r . Applying a logarithmic transformation and 

(1)a(r) = u(r)b(r)

Table 1  Datasets used for training, validation, and testing of DeepN4

iso isotropic, - not applicable

Dataset Subjects Sessions T1w Images Vendor (Scanner) Field Strength Resolution (mm)

ADNI (Jack et al., 2008) 799 1–5 1905 Siemens, GE, and Philips (61) 3 T 1 iso
1.2 × 1 x 1
1.2 × 1.054 x 1.054
2 × 1 x 1

BLSA (Shock, 1984) 1151 1–8 2869 Philips (3) 3 T 1.2 × 1x1
OASIS-3 (LaMontagne et al., 2019) 992 1–6 2452 Siemens (2) 1.5 T, 3 T 1 × 1 x 1

1.2 × 1 x 1
NACC 273 1–2 288 Philips (1) 3 T 1.2 × 1 x 1
BIOCARD (Sacktor et al., 2017) 212 1–4 508 Philips (1) 3 T 1.2 × 1 x 1
HCP YA (Essen et al., 2013) 1112 1 1112 Siemens (1) 3 T 0.7 iso
HCP Aging (Harms et al., 2018) 664 1 664 Siemens (1) 3 T 0.8 iso
HCP Dev (Harms et al., 2018) 626 1 626 Siemens (1) 3 T 0.8 iso
Learning (Training + Validation) - - 9382

(8340 + 
1042)

- - 2 iso

Testing (Withheld) - - 1042 - - 2 iso

Table 2  Datasets used for external validation of DeepN4

iso isotropic

Dataset Subjects Sessions T1w Images Vendor (Scanner) Field Strength Resolution (mm)

VMAP (Jefferson et al., 2016) 327 1–4 1074 Philips (1) 3 T 1 iso
KIRBY (Landman et al., 2011) 5 5 5 Philips (1) 3 T 1.2 × 1 x 1
SCA2 (Mascalchi et al., 2018) 

(ds001378)
5 5 5 Philips (1) 1.5 T 1 iso

IXI Hammersmith (IXI Dataset - 
Information eXtraction from images, 
2020)

5 5 5 Philips (1) 3 T 1.2 × 1 x 1

IXI Guys (IXI Dataset - Information 
eXtraction from images, 2020)

5 5 5 Philips (1) 1.5 T 1.2 × 1 x 1

MASSIVE (Froeling et al., 2017) 1 5 5 Philips (1) 3 T 1 iso
BRATS (Bakas et al., 2017) 5 5 5 Siemens, GE, and Philips (5) 1.5 T,3 T 1 iso
GLAUCAMO (Miller et al., 2019) 

(ds001743)
5 5 5 GE (1) 3 T 1 iso
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solving for corrected image, Eq. (1) can be rewritten as 
log(u(r)) = log(a(r)) − log(b(r)) . We aim to estimate 
log(b(r)) using a ral network. The following sections 
describe how our computing object was constructed, imple-
mented, and trained. This is followed by an overview of the 
data used.

DeepN4 Architecture

We parameterize the log-transformed bias field by a neural 
network, i.e.:

where function f is DeepN4, a generic 3D U-Net network 
and b′ is the predicted bias field image. DeepN4 is a 3D 
U-Net framework based on the traditional architecture pro-
posed by Ronneberger et al. (2015). The modification made 
in a well-validated three-dimensional image synthesis net-
work (Schilling et al., 2020) was adapted in this network. It 
uses Leaky ReLU as activation function and instance batch 
normalization. The expanding path consists of correspond-
ing transpose convolution layers to regain the spatial dimen-
sion of the input image. The convolution and devolution lay-
ers’ kernels are of size 3 × 3 × 3. The feature maps from the 
paths are concatenated via skip connections to retain both 
high-level and low-level features and enhance the accuracy 
of the model output.

Upon obtaining the predicted bias field eb�(r) , we apply 
smoothing on the predicted bias field eb�(r) (after the voxel-
model). This process aims to mitigate high-frequency noise 
and irregularities present in the predicted bias field, it aids 
in achieving a consistent and refined correction across the 
image (Tustison et al., 2010). There are two possible vari-
ations of smoothing. The first is a parameterized recon-
struction employing B-splines to impose smoothness using 
B-spline functions. B-spline functions have local support 
and are numerically stable, making them a powerful tool for 
smoothing. The B-spline approximation from N4ITK is a 
uniform multivariate B-spline object of arbitrary order with 
resolution increasing at each successive level in the iteration 
process (Tustison et al., 2010). We perform slicewise smooth-
ing using the B-spline model in ANTsPy (Tustison et al., 
2021), which is a wrapper of the ITK B-spline approximation 
from ITKN4. B-spline was configured with a spline order 
of 3 and five fitting levels. Alternatively, a second option is 
approximating the smoothing with an isotropic. We choose a 
filter (kernel size 19 × 19 × 19 voxels) with standard deviation 
of 3 voxels which blur the bias field slightly (Simkó et al., 
2022). Thus, the experiments can be summarized as DeepN4 
NS, DeepN4 B, and DeepN4 G for no smoothing, B-spline,  
or Gaussian smoothing based on the smoothing approach 
after the U-Net architecture.

(2)log b�(r) = f (a(r))

The loss function for DeepN4 is defined as L = La + Lb 
where La is L2 loss function between the predicted and the 
ground truth bias fields, and Lb is L2 loss between the cor-
rected image from the predicted bias field and the ground 
truth corrected image. That is:

In Eqns. (3) and (4), N denotes the total number of 
masked voxels in image. The log predicted bias field b(r) 
is only computed within a brain mask to avoid background 
intensities of zero. The acquired image is divided by the 
smoothed bias field eb�(r) to obtain the corrected image u�(r) 
(Fig. 2).

Furthermore, we compared our proposed DeepN4 models 
to other open source deep learning based bias field correc-
tion methods and Statistical Parametric Mapping (SPM) bias 
field correction (denoted here as SPMbfc). Specifically, we 
included the autoencoder model trained by Sridhara et al. 
using synthetic data from the HCP dataset, which is acces-
sible at https:// github. com/ Shash ank- 95/ Bias- Field- corre 
ction- in- 3D- MRIs (Sridhara et  al., 2021) and the CNN 
model implicitly trained on images from BrainWeb by 
Simkó et al., which is available at https:// github. com/ attil 
asimko/ bfc (Simkó et al., 2022). The default SPM configura-
tion with 60 mm full width at half maximum and a regulari-
zation of 0.001 was used for SPMbfc.

Training Protocol

For the training process, the network is optimized to 
minimize the loss function in Section "Training Proto-
col" using the Adam optimizer (Kingma & Ba, 2014) 
with a learning rate of 0.0001. We trained the model on a 
NVIDIA-Quadro RTX 5000 GPU with 16 GB of memory. 
The model was trained on the training cohort with the 
ground truth consisting of the bias field and the corrected 
T1w image from N4ITK (Fig. 2). The trained model that 
performed the best on the validation cohort was chosen to 
evaluate the test cohort.

Data Overview

The objective of this study was to train a neural network model 
with diverse datasets obtained from different scanners with differ-
ent resolutions, and different field strengths to create a robust and 
generalizable model approximating N4ITK, allowing the model 
to effectively handle variations in imaging protocols and produce 

(3)La =
1

N

N
∑

r=1

(

elogb
�(r) − b�(r)

)2

(4)Lb =
1

N

N
∑

r=1

(

eloga(r)−logb
�(r) − u(r)

)2
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accurate results. Consequently, we use de-identified data from 
eight distinct datasets as listed in Table 1 each with varying sub-
jects, sessions, and scanner vendors. The ADNI cohort (https:// 
adni. loni. usc. edu) began in 2003 as a public–private partnership, 
led by Principal Investigator, Michael W. Weiner, MD (Jack et al., 
2008). The NACC cohort began in 1999 and is comprised of 
dozens of Alzheimer’s Disease Research Centers that collect 
multimodal AD data (Beekly et al., 2004). The overall intention 
of the NACC cohort is to collate a large database of standardized 
clinical/neuropathological data (Beekly et al., 2007; Besser et al., 
2018; Weintraub et al., 2009, 2018). There was a total of 10,424 
T1w images that we randomly split into 90/5/5% as training, vali-
dation, and testing cohorts respectively. These were down-sam-
pled to 2 × 2 × 2 mm and padded such that the image dimensions 
were 128 × 128 × 128 across all scans. The scans are normalized 
with min–max normalization, ( X − Xmin)∕(Xmax − Xmin) where 
Xmax is the 99th intensity percentile of image X and Xmin is 0. The 
normalized image values are clipped with an interval of [0, 1]. 
These down-sampled, padded, and normalized images are then 
used as input to the network discussed in this next section. For 
external validation, we used an additional set of eight external 
datasets (from sites distinct to those in Table 1), as outlined in 
Table 2. Seven of these eight datasets are publicly accessible. We 
evaluated the performance on DeepN4 NS, DeepN4 B, DeepN4 
G, Sridhara et al. (2021), and Simkó et al. (2022) models on with-
held and external test dataset in Table 1 and Table 2 respectively.

Results

Quantitative Performance

Here, we demonstrate the quantitative evaluation of our 
model's performance. We began by validating in a simulated 

environment, computing the peak signal-to-noise ratio 
(PSNR) for corrected T1w images followed by a compari-
son with existing models, then we evaluate against SPM 
bias field correction. Finally, we employed contrast-to-noise 
ratio (CNR) analysis, to emphasis the model's effectiveness 
in delineating grey and white matter boundaries across var-
ied datasets.

Validation in Simulation

To ensure robust evaluation of the proposed model, we 
simulated a controlled environment by introducing a known 
bias field to five “truth” T1w images. We then compute 
the PSNR between the truth T1w images and the bias field 
corrected T1w images from N4ITK, SPMbfc, and DeepN4 
models (Fig. 3). We find the median PSNR for images gen-
erated by the DeepN4 NS model was 42.56 dB, for DeepN4 
B model was 42.67 dB, and for DeepN4 G was 42.79 dB, 

Fig. 2  N4ITK was processed on the large-scale datasets in Table 1 to 
generate the ground truth bias field and corrected T1w images. All 
the T1w images in Table 1 were fed into the DeepN4 which outputs 
the log of predicted bias field. Smoothing is performed on predicted 

bias field from which the corrected image is obtained. The loss is 
minimized between the ground truth bias field and corrected T1w 
image with the predicted bias field and computed corrected T1w 
image using Eqs. (3) and (4)

Fig. 3  In simulation, the DeepN4 models performs with PSNR 
of 42  dB. DeepN4 NS = DeepN4 with no smoothing, DeepN4 
G = DeepN4 with Gaussian smoothing, and DeepN4 B = DeepN4 
with B-spline smoothing

https://adni.loni.usc.edu
https://adni.loni.usc.edu
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which is a 5 dB increase from uncorrected T1w and 1 dB 
increase from the SOTA ITKN4. This suggest that the 
DeepN4 approach was slightly more robust at inhomogene-
ity correction than ITKN4 and SPMbfc.

Comparison Against Existing Models

To evaluate the performance of the proposed model, we 
computed PSNR between N4ITK and DeepN4 corrected 
T1w images for (a) withheld test dataset of 1042 subjects and  
(b) external test dataset of 1074 imaging sessions (VMAP 
dataset), as shown in Fig. 4. In the withheld test set as in 
Table 1, we find the median PSNR for images generated by 
the DeepN4 NS model was 48.96 dB, for DeepN4 B model 
was 49.38 dB, and for DeepN4 G was 49.23 dB (Fig. 4a). For 
the subjects in VMAP (external) dataset as in Table 2, we  
find that the median PSNR for the DeepN4 NS model was 
42.71 dB, for DeepN4 B was 42.87 dB, and DeepN4 G was 
43.43 dB (Fig. 4b). We observe that the DeepN4 models out-
performs the existing Sridhara et al. (2021) and Simkó et al. 
(2022) with notable increase in the median PSNR of 23.21 dB  
and 3.71 dB respectively in withheld dataset. This indicates 
that DeepN4 model with access to a large and diverse dataset 
was able to generalize from the training set while the exist-
ing models with limited numbers of training data were not 
generalizable. Please note that the results from the models 
were mean shifted to uncorrected T1w image. This adjust-
ment was made to compensate for the global intensity scal-
ing in N4ITK, as the rescale option, which prevents intensity 
drift at each iteration, was not enabled on by default.

Additionally, we find that accuracy with Gaussian 
approximation (DeepN4 G) is 0.5 dB higher than B-spline 

regularization (DeepN4 B) on the external datasets and 
equivalent on the withheld data.. This suggests the straight-
forward Gaussian approximation can serve as viable sub-
stitute for more resource-intensive B-spline regularization, 
which requires ANTsPy (Tustison et al., 2021) package. 
However, one potential factor contributing to this difference 
could be the higher number of randomly selected points used 
in Gaussian smoothing compared to B-spline.

The p-value between DeepN4 models was less than 
0.0001 with a Bonferroni correction indicating that there 
was a statistically significant difference between the with-
held dataset and the external dataset, reflecting the very 
large sample size and statistical power to detect small effects. 
We computed Cohens d, and the effect size was < 0.2 (con-
sidered small) between the models. This suggest DeepN4 
models performed with similar effectiveness.

Comparison Against SPM Bias Field Correction

Figure 5 shows PSNR as Fig. 4, but with the corrected T1w 
from SPM. We observe a median PSNR for images gener-
ated by the DeepN4 NS model was 40.56 dB, for DeepN4 B 
model was 40.63 dB, and for DeepN4 G was 40.63 dB, out-
performing the existing models (Fig. 5a). While the PSNR 
between SPMbfc T1w and predicted DeepN4 T1w is high, it 
is approximately 9 dB less compared to the PSNR between 
ITKN4 T1w and predicted DeepN4 T1w. This indicates that 
DeepN4 aligns more closely with ITKN4 approach, and it 
does not capture all the aspects of SPMbfc. For external 
VMAP test dataset, we find that the median PSNR values 
42.70 dB, 42.74 dB, and 43.07 dB for DeepN4 NS, DeepN4 
B, and DeepN4 G respectively align with the findings in 

Fig. 4  For both (a) and (b) DeepN4 models outperform existing mod-
els, and the reconstructed image is similar to state-of-the-art N4ITK. 
Higher PSNR indicates that reconstructed images from DeepN4 
models are closer to N4ITK. The observed difference in DeepN4 B 

and DeepN4 G is effectively the negligible. DeepN4 NS = DeepN4 
with no smoothing, DeepN4 G = DeepN4 with Gaussian smooth-
ing, DeepN4 B = DeepN4 with B-spline smoothing, and * p < 0.0001 
(Wilcoxon sign rank test with Bonferroni correction)
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Fig. 4b. As the PSNR for uncorrected T1w and SPMbfc is at 
41.89 dB, it indicates a lower impact of intensity inhomoge-
neity. In such cases where the bias field effects are minimal, 
the model outputs are similar to ITKN4 and SPMbfc.

Evaluation Using Contrast‑to‑Noise Ratio

The CNR was computed for uncorrected T1w and the cor-
rected ITKN4, SPMbfc, and DeepN4 T1w images for with-
held test dataset (Fig. 6a) and external test dataset (Fig. 6b). 
The CNR calculation was based on the contrast between the 
white matter (WM) and grey matter (GM) regions obtained 
from SLANT segmentation, while the noise was determined 
from the pooled standard derivation across these regions. It 
is important to note that while this method might overes-
timate the noise, it remains a relevant measure for assess-
ing CNR, particularly in terms of its ability to delineate 
the boundary between GM and WM. This approach was 
preferred over using background noise due to the dataset's 

diverse origin across multiple sites and acquisition proto-
cols. The noise in such datasets might lack homogeneity in 
the scan and might not accurately reflect the noise charac-
teristics present in the WM and GM regions.

In Fig. 6a, we find the T1w images from SPMbfc has a 
median CNR of 2.08 and 0.04 higher than that of DeepN4 
G. This suggest that SPMbfc is slightly better in differen-
tiating between the two tissue types. The CNR of the T1w 
images from DeepN4 models are similar to that of ITKN4. 
However, for the external dataset, we find N4ITK corrected 
T1w images have the highest CNR at 0.84 and the CNR 
reduces by 0.06 for the DeepN4 predicted T1w images as 
shown in Fig. 6b.

Qualitative Performance

Figure 7 shows the absolute percent error between the truth 
T1w image and DeepN4 G predicted T1w in the simula-
tion experiment from Fig. 3. From a visual perspective, the 

Fig. 5  For both (a) and (b) 
DeepN4 models outperform 
existing models, and the 
reconstructed image is similar 
to SPMbfc. Higher PSNR indi-
cates that reconstructed images 
from DeepN4 models are closer 
to SPMbfc. SPMbfc = SPM 
bias field correction, DeepN4 
NS = DeepN4 with no smooth-
ing, DeepN4 G = DeepN4 with 
Gaussian smoothing, DeepN4 
NS = DeepN4 with B-spline 
smoothing, and DeepN4 
B = DeepN4 with B-spline 
smoothing

Fig. 6  CNR in SPMbfc and 
ITKN4 highest for withheld and 
external test datasets. Negligi-
ble difference in DeepN4 T1w 
CNR from the SOTA ITKN4 
and SPMbfc. Higher CNR 
denotes clearer distinction 
between the tissue types (here, 
white matter and gray matter). 
There are 0.05% of scans with 
a poor CNR. SPMbfc = SPM 
bias field correction, DeepN4 
NS = DeepN4 with no smooth-
ing, DeepN4 G = DeepN4 
with Gaussian smoothing, and 
DeepN4 B = DeepN4 with 
B-spline smoothing
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DeepN4 corrected T1w strongly resembles the truth, indi-
cating that the approach effectively removes the artificially 
induced bias field.

Figure  8 shows the visualization of the results from 
90th, 50th and 10th percentile images with respect to the 
DeepN4 G results in the external VMAP dataset (Fig. 4(b) 
gray) along with intensity profiles for a selected slice. We 
observe visually (1) noticeable inhomogeneity correction 

from T1w to N4ITK and (2) DeepN4 corrected T1w are 
similar to N4ITK T1w images. The intensity profiles of the 
slices highlighted in blue and orange from uncorrected T1w 
and DeepN4 corrected T1w respectively, indicate reduction 
in intensity non-uniformity. Our proposed method is effec-
tive at reducing the inhomogeneity.

To demonstrate generalizability, we apply our model 
across external independent datasets in Table 2. Here, we 

Fig. 7  In simulation, the absolute percent error of truth T1w image to which the bias was introduced and corrected and the DeepN4 G T1 is 
approximately 20%

Fig. 8  90th, 50th, and 10th per-
centile sample are taken from 
DeepN4 G results in external 
VMAP dataset. Lower curvature 
between the intensity along a 
slice from uncorrected T1w 
(blue line), N4ITK corrected 
T1w (green line), and DeepN4 
corrected T1w (orange line) 
denotes more uniformity. The 
intensity distribution along the 
slice in DeepN4 and N4ITK 
have no significant variation in 
performance across the 90th, 
50th, and 10th percentiles sam-
ple. A = Anterior, P = Posterior



201Neuroinformatics (2024) 22:193–205 

show the resulting images from the sample which had 
median PSNR value between DeepN4 G and N4ITK and 
SPMbfc in each of the external dataset (Fig. 9). In all cases, 
we find the DeepN4 corrected images are similar to the 
SOTA N4ITK. This suggests the model is well generaliz-
able to images from different cohorts with different char-
acteristics. Note that for Figs. 4 and 5 the DeepN4 results 
are shown with Gaussian smoothing since the results in 
Fig. 3 show that performance with Gaussian smoothing and 
B-spline smoothing are essentially identical.

Conclusion

Adapting the state-of-the-art N4ITK bias field correction in 
model pipelines is challenging due to its intricate depend-
ency stack. It is not possible to have end-to-end differenti-
able segmentation models using ITKN4. In this work, we 
address these concerns by training DeepN4, a generic 3D 
U-Net with loss functions based on the principals of N4ITK. 
Thus, we make inhomogeneity correction transparent and 
amenable to optimization.

Although researchers have proposed various novel deep 
learning frameworks for bias field correction of MR images, 
such as BiasNet (Xu et al., 2022), implicit training on CNNs 
(Simkó et al., 2022), reconstruction algorithms (Gaillochet 
et al., 2020), and deep learning networks based on genera-
tive adversarial net (Chuang et al., 2022), these approaches 
have lacked flexibility and generalizability. The proposed 
simple technique has shown the feasibility of estimating and 
eliminating low frequency inhomogeneities on to rigid high 

frequency anatomical structures with naïve 3D networks. 
Our experiments show (1) similar performance to N4ITK 
both qualitatively and quantitatively and (2) consistent per-
formance on multiple, independent, unrelated external data-
sets, indicating the generalizability of our model. Thus, our 
model is easily understandable, efficient in performance, 
and readily available to incorporate into any existing pipe-
line with the inference function.

Deep learning models have employed B-spline for data 
augmentation (Chen et al., 2020). A potential direction for 
future research is to explore the integration of a B-spline 
layer within the neural network and having an iterative net-
work approach.

The pretrained pipeline is available in the form of a con-
tainer along with source code and can be accessed by follow-
ing the instructions at https:// github. com/ MASIL ab/ DeepN4.
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